20 research outputs found

    An empirical analysis of source code metrics and smart contract resource consumption

    Get PDF
    A smart contract (SC) is a programme stored in the Ethereum blockchain by a contract‐creation transaction. SC developers deploy an instance of the SC and attempt to execute it in exchange for a fee, paid in Ethereum coins (Ether). If the computation needed for their execution turns out to be larger than the effort proposed by the developer (i.e., the gasLimit ), their client instantiation will not be completed successfully. In this paper, we examine SCs from 11 Ethereum blockchain‐oriented software projects hosted on GitHub.com, and we evaluate the resources needed for their deployment (i.e., the gasUsed ). For each of these contracts, we also extract a suite of object‐oriented metrics, to evaluate their structural characteristics. Our results show a statistically significant correlation between some of the object‐oriented (OO) metrics and the resources consumed on the Ethereum blockchain network when deploying SCs. This result has a direct impact on how Ethereum developers engage with a SC: evaluating its structural characteristics, they will be able to produce a better estimate of the resources needed to deploy it. Other results show specific source code metrics to be prioritised based on application domains when the projects are clustered based on common themes

    Objective and subjective evaluation of High Dynamic Range video compression

    Get PDF
    A number of High Dynamic Range (HDR) video compression algorithms proposed to date have either been developed in isolation or only-partially compared with each other. Previous evaluations were conducted using quality assessment error metrics, which for the most part were developed for qualitative assessment of Low Dynamic Range (LDR) videos. This paper presents a comprehensive objective and subjective evaluation conducted with six published HDR video compression algorithms. The objective evaluation was undertaken on a large set of 39 HDR video sequences using seven numerical error metrics namely: PSNR, logPSNR, puPSNR, puSSIM, Weber MSE, HDR-VDP and HDR-VQM. The subjective evaluation involved six short-listed sequences and two ranking-based subjective experiments with hidden reference at two different output bitrates with 32 participants each, who were tasked to rank distorted HDR video footage compared to an uncompressed version of the same footage. Results suggest a strong correlation between the objective and subjective evaluation. Also, non-backward compatible compression algorithms appear to perform better at lower output bit rates than backward compatible algorithms across the settings used in this evaluation

    Perceptual quality of BRDF approximations: dataset and metrics

    Get PDF
    International audienceBidirectional Reflectance Distribution Functions (BRDFs) are pivotal to the perceived realism in image synthesis. While measured BRDF datasets are available, reflectance functions are most of the time approximated by analytical formulas for storage efficiency reasons. These approximations are often obtained by minimizing metrics such as L 2 —or weighted quadratic—distances, but these metrics do not usually correlate well with perceptual quality when the BRDF is used in a rendering context, which motivates a perceptual study. The contributions of this paper are threefold. First, we perform a large-scale user study to assess the perceptual quality of 2026 BRDF approximations, resulting in 84138 judgments across 1005 unique participants. We explore this dataset and analyze perceptual scores based on material type and illumination. Second, we assess nine analytical BRDF models in their ability to approximate tabulated BRDFs. Third, we assess several image-based and BRDF-based (Lp, optimal transport and kernel distance) metrics in their ability to approximate perceptual similarity judgments

    Perception of Visual Artifacts In Image-based Rendering of Façades

    Get PDF
    Image-based rendering (IBR) techniques allow users to create interactive 3D visualizations of scenes by taking a few snapshots. However, despite substantial progress in the field, the main barrier to better quality and more efficient IBRvisualizationsareseveraltypesofcommon, visuallyobjectionableartifacts.Theseoccurwhenscene geometry is approximate or viewpoints differ from the original shots, leading to parallax distortions, blurring, ghosting and popping errors that detract from the appearance of the scene. We argue that a better understanding of the causes and perceptualimpactoftheseartifactsisthekeytoimproving IBR methods. Inthisstudywepresent a series of psychophysical experiments in which we systematically map out the perception of artifacts in IBR visualizations of façades as a functionofthemostcommoncauses. Weseparateartifactsintodifferentclasses and measure how they impact visual appearance as a function of the number of images available, the geometry of the scene and the viewpoint. The results reveal a number of counter-intuitive effects in the perception of artifacts. We summarizeourresults intermsof practicalguidelines for improvingexisting andfuture IBR techniques
    corecore